Discriminator 학습1 GAN 동작 원리(How to work) GAN(Generative Adversarial Networks)은 훈련 데이터의 명시적인 확률 밀도 함수를 사용하지 않는다. 대신에 GAN은 생성자(generator)와 식별자(discriminator)로 알려진 두 개의 신경망(neural networks)을 사용하는 게임이론(game-theoretic) 접근 방식을 취합한다. 생성자는 무작위한 잡음을 입력으로 받아 실제 데이터와 유사한 가짜 샘플을 생성하려고 하며 식별자는 실제와 생성된 샘플을 구분하려고 한다. 생성자와 식별자는 이 게임을 반복적으로 진행하며, 생성자는 식별자를 속이기 위해 샘플을 개선하고, 식별자는 실제와 생성된 샘플을 정확히 구분하는 방법을 학습한.. 2024. 1. 21. 이전 1 다음